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Parallel Running System of Three
Oscillators Coupled Through a
Six-Port Magic Junction

ISAO OHTA, MEMBER, IEEE, AND TAKENORI KANEKO

Abstract —This paper treats parallel ranning systems of three oscillators
symmetrically coupled to one another through a six-port magic junction
and closely examines two systems for power combining. One system
delivers a combined power to the coaxial arm, the other to a circular
waveguide in the form of a circular polarization. The former is marked by
its easy adjustability and simple structure and the latter by its output form
and the electrical switch of the direction of rotation of circular polariza-
tion. Experimental verification for the two power-combining systems is
presented.

I. INTRODUCTION

OWER-COMBINING techniques for microwave os-

cillators have been intensively studied since microwave
solid-state devices, such as Gunn and IMPATT diodes,
were invented. The techniques may be classified broadly
into two categories [1]: 1) multiple-device oscillators and
2) power-combining systems of two or more oscillators.

The former originated in a five-IMPATT coaxial-type
oscillator in which the IMPATT diodes were coupled
through a nonresonant circuit by Rucker [2] and a 12-
IMPATT waveguide-type oscillator by Kurokawa and
Magalhaes [3]. This technique has attracted much interest
for its compact structure, the relative ease with which the
oscillation can be adjusted, and the low loss in coupling.
Consequently, various multiple-device oscillators with IM-
PATT’s, Gunn diodes, and GaAs FET’s mounted in a
rectangular or a cylindrical resonant cavity have been
developed [4]-[7]. These oscillators, however, are generally
limited in the number of devices by the dimensions of the
device-mounting structure and the cavity and to the sup-
pression of unwanted oscillation modes.

Pioneering studies of power-combining systems involv-
ing two or more oscillators include the eight-IMPATT
oscillators by Fukui [8] and the 32-tunnel-diode oscillators
by Mizushina [9]. Thereafter parallel running of multiple
oscillators has also been actively investigated with theoreti-
cal interest in a mutual synchronization of oscillators as a
typical nonlinear phenomenon [10j—[15]. The well-known
combining structures are a 2V-oscillator system coupled
through 2V —1 3 dB hybrids such as a magic T [8], [9], and
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an N-oscillator system serially connected by N —1 direc-
tional couplers with coupling factors of 3 dB, 4.78 dB, and
so forth [12]. Although these parallel running systems have
the drawbacks of being large in size, having oscillations
that are relatively complicated to adjust, and having a
combining efficiency that deteriorates with the multiplica-
tion of the number of oscillators, the combining techniques
are useful for constructing an MIC multiple-oscillator sys-
tem, and an ultra-multiple-device oscillator system with a
hundred or more active devices by the use of several
multiple-device oscillators, and for combining the powers
from existing oscillators.

If an easily adjustable combiner that is able to couple
more oscillators per stage is employed, the above men-
tioned disadvantages of a parallel running system are
considerably eased. Mizushina et al. have proposed a
simpler multiple-oscillator system in which a basic element
is constructed of three (multiple-device) oscillators coupled
through a short-slot 3 dB coupler [15], [16]. This system,
however, appears to be difficult to analyze and compli-
cated to adjust, because each coupling between the oscilla-
tors is unbalanced and a synchronized state is optimized
by adjusting the frequency of each oscillator in operation.

This paper treats parallel running systems of three oscil-
lators symmetrically coupled through a six-port magic
junction [17]. The treatment is prompted by a practical
interest in power combining and a theoretical interest in
the phenomenon of mutual synchronization of three oscil-
lators, and it closely examines two definite power combin-
ing systems. One system delivers a combined power to the
coaxial arm; the other a combined power to the circular
waveguide in a mode with circular polarization. These
systems are easy to analyze and adjust from the two
reasons: coupling between the three oscillators is balanced
and a synchronized state can be adjusted independently of
the oscillators as in the two-oscillator system constructed
with a magic T. In Section II we first outline the underly-
ing principles of the three-oscillator system, and point out
that the system can provide the two above-mentioned
different types of combined powers according to the cir-
cuit conditions. Section III is devoted to a derivation of
the synchronized steady-state solutions of the oscillator
system. In Section IV, we obtain variational equations

0018-9480,/89 /1100-1699501.00 ©1989 IEEE



1700

necessary for dealing with the stability of the steady-state
solutions. In Section V, we consider two systems with a
TEM output and a circularly polarized output concretely,
and derive the stability conditions of each synchronization
mode in the two systems. Finally, in Section VI, two
different experimental systems for power combining are
constructed and tested to confirm theoretical results.

II. CONSTRUCTION OF PARALLEL RUNNING SYSTEM

A six-port magic junction (Fig. 1) is employed as a
power combiner. Numbering the ports symmetrically locat-
ing three reference planes, ¢; ~ ¢5, in the three rectangular
waveguides and designating the reference planes in the
coaxial arm and the circular arm for two polarizations as
ty, ts, and t4, respectively, as shown in Fig. 1, we can
exhibit the scattering matrix in the form {17]

o 0 o 1 s o |

0 0 0 IAB 16 142

s1=| ©° 0 0 1A3 146 142
3 13 143 0 0 0
V273 =146 -146 0 0 0

0 142 142 0 0 0|

(1)

Substituting (1) into [by, by, - -, bl' =[Sl ay, ay,- - -,
a¢]" and modifying the resultant equation, we obtain .

b,
b,
by
by
(bs+ jbs)/V2
L(bs - jbé)/\/i |
[0 0 0 1 1 1
0 0 0 1 /23 gmI27/3
1 {0 0 0 1 e /273 gs2/3
= _3_ 1 1 1 0 0 0
1 eij/S 6—1277/3 O 0 0
1 e—/27r/3 81271/3 0 0 0 ]
r a, T
a;
aj
. @)
(as— jag)/V2
| (as+ Jag) /N2 |

where a, and b, (i=1,2,---,6) are the incident and scat-
tered power waves of the ith port, respectively. Moreover,
notice that right- and left-hand circularly polarized waves
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are selected as the variables in the circular waveguide.
Equation (2) indicates that equal-amplitude waves incident
in the three rectangular waveguides compietely combine
into a TEM wave in the coaxial arm or into either of two
circularly polarized waves in the circular arm depending
on whether their phases are in-phase or three-phase.

We now consider the power combining system with the
three oscillators symmetrically connected to the three rect-
angular waveguides of the above six-port magic junction as
shown in Fig. 2. If both circuits attached to the coaxial
and the circular arms are adjusted to stabilize an in-phase
synchronization, the powers from the three oscillators
completely combine and emerge from the coaxial arm.
Accordingly, since no power is delivered to the circuit of
the circular arm, the circuit seems to be unnecessary. But
actually it plays the important role of holding the in-phase
synchronization, as will be shown later.

If, on the other hand, a three-phase synchronization is
stabilized, a combined wave in a right- or left-hand circu-
lar polarization is produced in the circular waveguide. In
this case, it does not necessarily follow that we can obtain
a circular polarization with a desired direction of rotation,
because the two three-phase synchronizations are degener-
ate for a reciprocal circular waveguide circuit with rota-
tional symmetry. To separate the two modes, the degener-
acy is to be resolved. This can be achieved by, for example,
connecting a nonreciprocal circuit to the circular wave-
guide, as will be discussed in Section V.

III. STEADY-STATE SOLUTIONS

In Fig. 2, [Y] indicates an admittance matrix looking
toward the coupling circuit inclusive of variable reflectors
(or loads) at the symmetrically located reference planes of
three oscillators. On the assumption that each oscillator
has the same parameters except for the free-running fre-
quency, let us represent the admittance of the pth oscilla-
tor as

Yo, =G, (V,)+ jQu(w—wg,) /0, p=12.3 (3)
where G.(V),) is the negative conductance, V), the ampli-
tude of the oscillation voltage, w,, the free-running angu-
lar frequency, Q, the external Q, and wy= (wy + wgy +
@3)/3-

Now, considering the condition whereby the total admit-
tance is equal to zero in Fig. 2, we obtain the following
condition necessary for synchronized oscillation:

((Y]+[¥:]o=0 (4)
where v is the voltage vector with its components given by
the RF voltages at respective reference planes, and

[Y5] = diag [ Y, Yo, Yos]-

()

Next, let it be assumed that all the W, are of the same
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(b)

Fig. 1. (a) Schematic configuration of a six-port magic junction em-
ployed as a combiner. (b) Terminals in the circular guide for two
polarizations.

Fig. 2. Block diagram of a parallel running system of three oscillators
coupled through a six-port magic junction.

value. Then, all the oscillators see the same admittance
owing to the symmetry of the coupling circuit and the
identity of the three oscillators, and we have V=V, =
V3(EV), ie., Y;=Y;=Y;EY;). As a result, (4) be-
comes the eigenvalue problem of [Y].

From the third-order rotational symmetry, the eigenvec-
tors of [Y'] are given by

1t 1
u=—-=1\1|, u,=—=\e 23
V3 1 V3 0 27/3
[ 1
.,3=-}— e (6)
3 _e—12ﬂ/3

and the corresponding eigenvalues by

1-T

YTIrT

i

i=1,2,3 (7

where T} represents the voltage reflection coefficient of the
variable reflector in the coaxial arm (its phase is referred
to at the three symmetrical reference planes), and I', and
T, those for right- and left-hand circular polarizations in
the circular waveguide, respectively.

+J
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Consequently, we find that this system falls into one of
the following three synchronized steady-state solutions:

1) In-phase synchronization:

Y+ =0, v=V3Vu,. (8)

This mode of synchronization can combine the three
powers into a TEM wave in the coaxial arm, as
mentioned above.

2) Three-phase synchronizations:

Yo+ y3,=0, =13 Vu,

v=V3 Vu,.

These second and third modes produce a right- and a
left-hand circularly polarized output into the circular
waveguide, respectively.

©)

Yo+ y;=0, (10)

Moreover, it is found from (8)-(10) that, in every case,
each oscillator behaves as if it were terminated in a load
with the same admittance as the corresponding eigenvalue
(eigenadmittance). )

IV. VARIATIONAL EQUATIONS

In this section, we derive variational equations funda-
mental to treating the stability of the above synchronized
steady-state solutions. Now, let it be assumed that the
amplitude and the phase of the oscillation voltage of the
pth oscillator deviate by slight values of 8V, and 686,
respectively, from the ith steady-state solution for one
reason or another. Then we can rewrite the voltage vector
with the first-order approximation as follows:

v=uv,+ 8V, + jVi8,
where v, =3 Vu, and

(11)

8V, = diag[e/®, /%2, /%] 8V

80, = diag[ e/, /%2, £/%]80.

(12)
(13)

To complete the list of definitions we have 6, (p=1,2,3)
= oscillation phase of the pth oscillator in the ith syn-
chronism:

v, 86,
sV =| 8V, 86 = | 86,
8V, 80,

With consideration of the fact that the term jw in an

admittance operated on v, indicates dv, /dt in a dynamical

sense [18], substituting (11) into (4) gives

3
Z Yprvr + {Ge(V+ SI/p)+ sze(w - wO)/wO
r=1

20, [ds8, 1 dsv

— 7 P
a vy a

= = 14
o }vp 0,p=1,2,3 (14)

where it is assumed that the coupling circuit is free of
frequency dependence. To a first-order approximation with
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REFLECTOR
Fig. 3. Block diagram of a power-combining system delivering the sum

of three outputs to a load in the coaxial arm

respect to small variations, the above equation can be
rewritten in the matrix form
([Y] + YG[U])(U” +8V, + jV88,) + 58V,

+d8V, /dr + jVdsl,/dr=0 (15)

where s = (dG,/dV),V, [U] is tne unit matrix, and 7=
(wo/2Q)t.

Substituting the ith steady-state equation,

([Y]+YG[U])vis=0 (16)

into (15) and using the spectral representation of [Y], we
have

3
Z [ﬁk' {()’k + YG)(BI/I + jV801)+53K
k=1

+d8V,/dr+ jVdse,/dr} u, =0 (17)

where i, is the adjoint vector of u,. Furthermore, substi-
tuting the admittance expression in the ith steady-state,

(18)

into (17) and putting all the coefficients of u, in the
resultant equation into zero from the orthonormal condi-
tions between u,’s, we can derive the following variational
equations around the ith steady-state solution:

Yo+y,=0

- { (e = 2.)(8V, + jV80,) + 58V,

+d8V, /dr + jVde8, /dr) =0,  k=1,2,3. (19)

V. CONDITION FOR STABILITY
A. System with Combined Qutput Power to a Coaxial Load

We consider the power-combining system shown in Fig.
3, where the coaxial arm is terminated in a load with a
reflection coefficient of [, and the circular arm in a
variable reflector with a reflection coefficient of T, regard-
less of the direction of polarization. Hence, in the follow-
ing we should note that the three-phase synchronizations
of this system are degenerate. After closely examining the
stability conditions for each mode of synchronization, we
will obtain the circuit conditions for complete power com-
bining.

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 37, NO. 11, NOVEMBER 1989

1) Stability Conditions for In-Phase Synchronization: In
this case, since 8§V, = 8V and 80, = 88, from (19) we obtain

d(a,-8V) d(a,-80) B
o dr dr B

+s(i-V)+ jv 0 (20)

i, [d8V/dr + 58V +Re(y, — y, )8
=V Im(y,— )80+ j{Vds8/dr
+V Re(y, — ¥1)80 +Im(y, - Y1)3V}] =0,
k=2,3. (21)

Paying attention to the fact that u,, 8V, and 88 are real
vectors, we can divide (20) into the following two equa-
tions:

d(i,- 8V ) /dr +s(ii,-8V) =0
d(ii,-86)/dr=0.

(22a)
(22b)

On the other hand, when y, = y,, i.e., in the present case,
it is evident from (21) that the term in brackets is orthogo-
nal to both u, and u,, and hence is proportional to the
real vector u;. Accordingly, we can see that the real and
imaginary parts in the brackets are each proportional to
u;. Thus,

d(i,8V)/dr+ {s+Re(y, — )} (i, V)

—Im(y, — y) V(% 86) =0 (23a)
Vd(ii,-80)/dr +Re(y, — y,)V(ii,-80)
+Im(y, — y)(#,8V) =0,  k=2,3. (23b)

For stable in-phase synchronization all u,, u,, and u,
components of 8V and 86 have to decrease with time. For
the u; component of §¥, the inequality

s>0 (24)

is required from (22a), while no condition for the u,
component of 88 is required from (22b). Since an ordinary
self-excited oscillator has s = 2 [19], the above inequality is
satisfied generally. For the u, and u, cowmponents of 8V
and 86, two roots of the following characeristic equation
derived from (23) must have negative real parts:

s+Re(y,—y;)+A

Re(y.—»)+A

where
(1-T,)/(1+T,). (26)

To satisfy the above requirements, it is necessary and
sufficient that

chy2=y3=

s+2Re(y,—y,)>0 (27a)

s Re(y.— »)+{Re(y,— y)}’+{Im(y,— y,)}*>0
(27b)
hold.

2) Stability Conditions for Three-Phase Synchronizations:
First, we deal with the second mode (i = 2) given by (9).
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Substituting i = 2 and (26) into (19) yields
i {()’1 = 7)(8V, + jV88,) + 58V,
+ddV, /dr + jVdee,/dr} =0 (28)
it (s8V, + ddV,/dr + jvds,/dr) =0 (29)
ity (s8V,+ d8V,/dr + jvdse,/dr)=0. (30)

The Hermitian inner product of each eigenvector and 8V,
or 88, can be rewritten as

’71'(8st802)= (ﬁSR_jﬁSI)'(‘SV, 80) (313)
ﬂ2(8V27 602) =ﬁ17(8V7 60) (31b)
ity (8V,, 80,) = (fi;5 + jiiy;)-(8V,80)  (31c)

where u, is replaced in the form

(32)
by the use of real vectors u;; and u,;. Since, as can be
seen from (31b), &, (8¥,, 86,) is a real number, (29)
becomes the s»me as (22). Therefore, no condition but (24)
is derived frc+: (31b). Substituting (31a) and (31c) into
(28) and (30), respectively, and equating the real =nd
imaginary parts separately, we have

A8V, /dr + Vdd8, /dr + s8V +Re( y,— y,) (8Vy + V38;)

Uy =uzp+ jusy

+Im(y, — . )(8V, = V88) =0 (33a)
ddV;/dr —Vddl, /d7 + s8V;
+Re(y, = y.)(8V, — Vby)
—Im(y,— y.)(8Vx +V86;) =0 (33b)
ddVy/dT—Vdél,/dt + s8Vz=0 (34a)
ddV,/dr +Vd8ly /dr+ s8V,=0 (34b)

where
SVRy,=173R',-8V 80R,,=ﬁ3R’,-80. (35)

Equations (33) and (34; give the characteristic equation

AN+ p N+ p, X+ p A+ p,=0 (36)

where
po=5"(yx+y?)/4 (372)
pi=s(y3+ y7 + ) (37b)
P2=yat+yi+3sypt+s? (37c)
P3=2yp+s) (37d)

with the replacements of

ye=Re(y;—y.) yr=Im(y;—y.). (38)

Applying the Routh—~Hurwitz criterion to (36) brings the

following necessary and sufficient conditions that all the
roots of (36) have negative real parts for p, > 0 [20}:

P> 0 (39a)
D1 Do
2 ol 0 (39b)
P pPe O
Pz P2 P1{>0. (39¢)
0 1 ps
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2nd, Srd:lNSTABLEa

(Region-B

Fig. 4. Stability region of the in-phase synchronization (region A) and
instability region of the other synchronizations (region B) on a Smith
admittance chart for a circular arm circuit (I,) of a power-combining
system delivering output power to a matched load (I, = 0).

It
{Im(y,— y.)}*{s +2Re(y;— ».)}

+2Re(y— y ) {s+Re(y— y)} >0 (40)

all the inequalities of (39) are satisfied. Accordingly, (40) is
the stability condition for the second mode.

To the third mode also (40) applies, because we can have
the same discussion by the interchange of subscripts 2
and 3.

3) Circuit Condition for Power Combining: Let us exam-
ine actual circuit conditions for complete power combining
by means of the above stability conditions, (27) and (40).
If a matched load is connected to the coaxial arm, we have
(41)

Moreover, let it be assumed that

s=2. (42)
Then, a region where y, (I',) satisfies (27), in other words a
stability region of the power-combining synchronization
for a circular arm circuit, can be drawn as region A on the
Smith admittance chart in Fig. 4. On the other hand, as a
region where (40) is unsatisfied, i.e., an instability region of
the other modes, we obtain region B in the same figure.
Thus, it is found that by fixation of T, in the common
region between both regions (i.e., region B), only the first
mode (in-phase mode) can be realized with the desired
stability; hence a completely combined power can be deliv-
ered to the matched load in the coaxial arm.

B. System with Combined Output Power in a Circularly
Polarized Wave

Fig. 5(a) exhibits a specific circuit configuration to be
discussed. A variable reflector is connected to the coaxial
arm, and a Faraday rotator, a centered circular aperture in
a transverse metallic plate, and a (symmetrical) load in
that order are connected to the circular arm. In the figure,
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I, represents a reflection coefficient of the variable termi-
nation in the coaxial arm, while I', and I} represent those
of the circular waveguide circuits for right- and left-hand
circular polarizations, respectively. The magnitudes of T,
and I are equally adjusted by the size of the circular
aperture, but their phase angles differently by the exciting
current of the Faraday rotator. Since the Faraday rotator
gives different phase shifts to a right- and a left-hand
circular polarization, the two three-phase synchronizations
of this system become nondegenerate. Therefore, we can
distinguishably obtain one of the two circularly polarized
outputs. In addition, it is also possible electrically to
switch its direction of rotation since the phase angles of T,
and I, are exchanged for each other by inversion of the
exciting current of the Faraday rotator.

Now, let us analyze the stability conditions for the ith
synchronization mode (i =1,2,3). The present system is a
little more complicated than the first mode system because
of the nondegeneracy of the three-phase synchronization
modes. Let it be assumed that integers i, j, and k£ in that
order are equal to 1, 2, and 3 in the cyclic order; for
example if i =3, we have that j=1 and k=2. Then, by
inspecting (6), (12), (13), and (35), we can obtain

i -8V, =i, oV ii, 58, = ii,- 36 (43)
GOV, =8V + j8V,  ii-88,=580,+ jo0, (44)
i3V, =8V,— j8V, i, 80,=80,— j80,. (45)

Substituting (43), (44), and (45) into (19), we obtain the
same equations as (22) and the following equations:

ddVy/dr —Vdd0,/dr + sV, +Re(y, — y,)(8V, — V56,)
~Im(y,— y )(8V, +V86,)=0 (46a)
dsv;/dr +Vdsby, /dr + 58V, +Re(y, — y, )8V, + Vdby)
+Im(y — y ) (8V,—V86,) =0 (46b)

doVy/dr +Vd88, /d7 + s8Vz +Re(y, — y )(8Vy +V86,)

+1Im(y, — y)(8V,—V86,) =0 (47a)
ddV,/dr —Vddly /dr + s8V, +Re(y, — y,)(8V; — V86y)
—Im(y, — »,)(8V,+V86,) =0. (47b)

Actual stability conditions for this case are derived from
only (46) and (47) in the same manner as before. However,
a characteristic equation derived from the four equations,
as can be forecast from the difference between (34) and
(47), becomes more complicated than (36). For this reason,
it is difficult to obtain analytically stability conditions in
the form of an inequality such as (27) and (40). Fortu-
nately, in the above discussion, we see that the main parts
of a stability and an instability region are located where
the imaginary part of the eigenadmittance, y, ,.k» Vanishes.
So, let us examine the following particular case first:

Imy,=Imy =Imy, =0. (48)
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Osc.1 OV
Circular
Iy T, aperture
Variable 3
reflector D Load
Faraday
N Osc.3 rotator
Osc.?2 ¢
(a)
Mechanical Round-to-rectangular
rotator transition
) Power sensor
i\’\ Frequency counter
Isolator|Spectrum analyzer

Matched res. card
absorbing a field with the
elect. vector perp. to TET,

(b)

Fig. 5. Block diagrams of (a) an oscillator system directly combining
three output powers into a circularly polarized wave and of (b) its load
composed for measurements of output power in various directions of
polarization.

Then the characteristic equation reduces to the second-
order equation

2N +2(s + Yurt Vir) A+ S()’JIR + Yur)
+2yj,Rysz =0 (49)
where
Y =Re(y,- ) Yur=Re(y=1,). (50)
This equation derives the two conditions necessary and

sufficient for stable synchronization of the ith mode as
follows:

S+yth+ysz>O (513)

$(Vur+ Yiir) F 2,8 Vg > 0. (51b)

In a practical parallel running system, it is to be desired
that only the ith mode is stabilized and the other modes
(the jth and kth modes) are suppressed. For this purpose
we may choose y, and y, with comparable values. Now, if
we assume that

(52)

Y, = Vi
then the inequality
y/zR+yk1R>0 (53)

satisfies simultaneously the two inequalities in (51) approx-
imately. Moreover, (53) derives the following inequalities

with (52) also:
yij+yljR:yljR<O (54&)
YRt Yir = Yur < 0. (54b)

Namely both the jth and kth modes become unstable.
Consequently (53) is the condition necessary and sufficient
for stabilizing only the ith mode under the assumptions of
(48) and (52).

For the requirement of more rigorous conditions, nu-
merical calculation is unavoidable. As an example, Fig. 6
exhibits a stability and an instability region of each syn-
chronization mode numerically calculated for I'; when
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Fig. 6. Stability and instability regions of each synchronization mode
numerically derived for T} of a system with a circularly polarized
output power when s =2 and I} =T, = —0.4 (on a Smith admittance
chart).

—
[=3
<

T T T
Power
TTuniocking * combining efficiency
. !

B
[

|
% ‘ l Srh 49150
OAOOJJ_A_AM

0 an

o]
(=]

49250

o
o

Frequency

49200
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N
o
»

Power combining efficiency (7)

Synchronizing frequency (MHz)

m
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Fig. 7. Measured power-combining efficiency and synchronizing fre-
quency for the power combining system with an output power into a
coaxial load.

s=2 and
I=T,=-04(ie., y,=y,=2.33). (55)

The figure also indicates that (53) can be regarded as
appropriate.

VI. EXPERIMENTAL RESULTS

In order to prove the above-mentioned analytical re-
sults, the two different types of power combining (parallel
running) systems were constructed of three Gunn oscilla-
tors, whose output powers and free-running frequencies
were equally adjusted to 68 mW and 9.2 GHz, respectively,
and whose external Q’s were 70, 71, and 72.

A. System with Combined Output Power to a Coaxial Load

The system shown in Fig. 3 was constructed and tested.
Fig. 7 exhibits the measured power-combining efficiencies
and synchronizing frequencies as a function of —argT’, for
{T',] = 0.35. By inspection of the locus of |I',|=0.35 illus-
trated in Fig. 4, it is found that the power-combining
synchronization is maintained in a region comparable to
region B. Furthermore, the frequency in the synchronism is
approximately equal to that in free-running, and the
power-combining efficiency is about 97 percent. Outside of
this range, the system operates in the three-phase synchro-
nism. In three-phase synchronism, the output power deliv-
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Fig. 8. Phase shift of I, and I} versus exciting current for the Faraday
rotator (measured).

ered to the coaxial load is very small and below about 0.05
percent in combining efficiency at the middle of the syn-
chronization region. The synchronization frequencies are
pulled by I, and their maximum deviation from the free-
running frequency is roughly equal to the maximum devia-
tion, 45.4 MHz, of a single oscillator with an external Q of
71 (the average value for the three oscillators) pulled by a
load having a reflection coefficient of |I',j=0.35.

Hysteretic phenomena also are observed in transitions
from one synchronization to the other. This is explained
by concurrent stability of both synchronizations.

B. System with Combined Output Power in a Circularly
Polarized Wave

An experimental oscillator system was constructed in
the manner illustrated in Fig. 5(a). As shown in Fig. 5(b),
the load was composed of the arrangement for measure-
ments of the output power in various directions of polar-
ization. The metallic circular aperture and the Faraday
rotator employed gave reflections whose magnitudes were
0.37 (|, 5]=0.37) and whose relative phase angles were
determined by the measured phase shifts shown in Fig. §,
respectively. If T, = —0.37 and initial phase angles of I, ,
(phase angle when the exciting current of the Faraday
rotator equals zero) is 123°, we have that y, = y, =217
and y,=0.46 (I, = —0.37 and I =0.37) when the excit-
ing current becomes 27 mA. Then, as described in the
previous section, since only the third mode is stabilized, we
can obtain a left-hand circularly polarized output. In this
case, the circuit of the coaxial arm plays the role of
suppressing the in-phase synchronization and holding the
three-phase synchronization, though it cannot discriminate
the two three-phase synchronizations by itself.

Fig. 9 shows the measured output powers in a direction
of polarization parallel to that of Osc. 1 and synchronizing
frequencies as a function of the exciting current of the
Faraday rotator. As predicted, the third mode is stabilized
in a region around the exciting current of 27 mA. Consid-
ering that each oscillator in steady state behaves as if it
were terminated in the eigenadmittance, we can under-
stand that the synchronizing frequency of the third mode
becomes lower because of the phase delay of I (i.e., the
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increase of the susceptance of y, in the stability region)
with the increase of the exciting current, and oppositely
that of the second mode higher because of the phase
advance of I3.

Fig. 10 illustrates the measured combined power in
various directions of polarization at the exciting currents
corresponding to points A, B, C, D, and E dotted in Fig.
9. At points B, C, and D, which exist in the center of the
stability region and neighborhood, axial ratios near unity
namely, approximate circular polarizations, are obtained,
but at points A and E in the edge of the region deteriora-
tion of the axial ratios is noticeable. Moreover, the sum of
the combined powers in two directions of polarization
orthogonal to each other is reduced to about 80 percent of
the sum of output powers from the three oscillators. This is
presumably caused by the fact that each oscillator runs at
a point separated from the optimum operation point or, in
other words, it is equivalently terminated in the eigenad-
mittance different from an optimum admittance (a matched
load).

VIL

We have made both a theoretical and an experimental
investigation concerning the synchronization of three oscil-
lators symmetrically coupled through a six-port magic
junction with the aim of power combining, and have
suggested two parallel running systems (power combining
structures), namely systems with a combined output power
in the coaxial load and with a circularly polarized output
power combined in the circular waveguide. The one can be
easily adjusted and has a simple combining structure, and
the other is distinguished by the form of output power
directly combined into a circular polarization and electri-

CONCLUSIONS
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cal switch of the rotatory direction of the circular polariza-
tion.

The development of a combiner capable of connecting
four or more oscillators and the examination of a power-
combining oscillator system utilizing the methods de-
scribed in this paper would be interesting subjects for
further work.
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