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,41mtract —This paper treats parallel running systems of three oscillators

symmetrically coupled to one another through a six-port magic junction

and closely examines two systems for power combining. One system

defivem a combined power to the coaxiaf arm, the other to a circular

wavegnide in the form of a circular polarization. The former is marked by

its easy adjustab]iity and simple structure and the latter by its outpnt form

and the electrical switch of the dhection of rotation of circular polariza-

tion. Experimental verification for the two power-combining systems is

presented.

I. lNTRODUCTION

POWER-COMBINING techniques for microwave os-

cillators have been intensively studied since microwave

solid-state devices, such as Gunn and IMPATT diodes,

were invented. The techniques may be classified broadly

into two categories [1]: 1) multiple-device oscillators and

2) power-combining systems of two or more oscillators.

The former originated in a five-IMPATT coaxial-type

oscillator in which the IMPATT diodes were’ coupled

through a nonresonant circuit by Rucker [2] and a 12-

IMPATT waveguide-type oscillator by Kurokawa and

Magalhaes [3]. This technique has attracted much interest

for its compact structure, the relative ease with which the

oscillation can be adjusted, and the low loss in coupling.

Consequently, various multiple-device oscillators with IM-

PATT’s, Gunn diodes, and GRAS FET’s mounted in a

rectangular or a cylindrical resonant cavity have been

developed [4]–[7]. These oscillators, however, are generally

limited in the number of devices by the dimensions of the

device-mounting structure and the cavity and to the sup-

pression of unwanted oscillation modes.

Pioneering studies of power-combining systems involv-

ing two or more oscillators include the eight-IMPATT

oscillators by Fukui [8] and the 32-tunnel-diode oscillators

by Mizushina [9]. Thereafter parallel running of multiple

oscillators has also been actively investigated with theoreti-

cal interest in a mutual synchronization of oscillators as a

typical nonlinear phenomenon [10]–[15]. The well-known

combining structures are a 2~-oscillator system coupled

through 2~ – 13 dB hybrids such as a magic T [8], [9], and
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an N-oscillator system serially connected by N – 1 direc-

tional couplers with coupling factors of 3 dB, 4.78 dB, and

so forth [12]. Although these parallel running systems have

the drawbacks of being large in size, having oscillations

that are relatively complicated to adjust, and having a

combining efficiency that deteriorates with the multiplica-

tion of the number of oscillators, the combining techniques

are useful for constructing an Ml C multiple-oscillator sys-

tem, and an ultra-multiple-device oscillator system with a

hundred or more active devices by the use of several

multiple-device oscillators, and for combining the powers

from existing oscillators.

If an easily adjustable combiner that is able to couple

more oscillators per stage is employed, the above men-

tioned disadvantages of a parallel running system are

considerably eased. Mizushina et al. have proposed a

simpler multiple-oscillator system in which a basic element

is constructed of three (multiple-device) oscillators coupled

through a short-slot 3 dB coupler [15], [16]. This system,

however, appears to be difficult to analyze and compli-

cated to adjust, because each coupling between the oscilla-

tors is unbalanced and a synchronized state is optimized

by adjusting the frequency of each oscillator in operation.

This paper treats parallel running systems of three oscil-

lators symmetrically coupled through a six-port magic

junction [17]. The treatment is prompted by a practical
interest in power combining and a theoretical interest in

the phenomenon of mutual synchronization of three oscil-

lators, and it closely examines two definite power combin-

ing systems. One system delivers a combined power to the

coaxial arm; the other a combined power to the circular

waveguide in a mode with circular polarization. These

systems are easy to analyze and adjust from the two

reasons: coupling between the three oscillators is balanced

and a synchronized state can be adjusted independently of

the oscillators as in the two-oscillator system constructed

with a magic T. In Section H we first outline the underly-
ing principles of the three-oscillator system, and point out

that the system can provide the two above-mentioned

different types of combined powers according to the cir-

cuit conditions. Section III is devoted to a derivation of

the synchronized steady-state solutions of the oscillator

system. In Section IV, we obtain variational equations
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necessary for dealing with the stability of the steady-state

solutions. In Section V, we consider two systems with a

TEM output and a circularly polarized output concretely,

and derive the stability conditions of each synchronization

mode in the two systems. Finally, in Section VI, two

different experimental systems for power combining are

constructed and tested to confirm theoretical results.

II. CONSTRUCTION OF PARALLEL RUNNING SYSTEM

A six-port magic junction (Fig. 1) is employed as a

power combiner. Numbering the ports symmetrically locat-

ing three reference planes, tl - t~, in the three rectangular

waveguides and designating the reference planes in the

coaxial arm and the circular arm for two polarizations as

t t5,and t6,respectively, as shown in Fig. 1, we can

e%bit the scattering matrix in the form [17]

o 0 0 1/6 @ o

0 0 0 1,/6 – l/JF l/fi

[s] = 0
0 0 l/fi – I/k – l/Ji

I/& l/fi l/fi o 0 0

m –l/w – l/fi o 0 0

0 l/yE –l/w o 0 0

Substituting (1)

a ~] r and modifying

bl

b~

b3

bb

(b, + jbG)/fi

(b, - jb6)/fi

(1)

into [bl, bz,. . . . b6]f= [S][al, U2,. . . .

the resultant equation, we obtain

o 011 11
0 0 ~ ~J2w/3 ~-]2m/3

o 0 1 ~-J2T/3 ~]2T/3

1 100 0

1 ~J2T/3 ~ –J2./3 o 0 0

1 ~-J2rr/3 ~J2V/3 o 0 0
L

al

a2

a3

(a,-~16)/fi

(a, + ja6)/fi

(2)

are selected as the variables in the circular waveguide.

Equation (2) indicates that equal-amplitude waves incident

in the three rectangular waveguides completely combine

into a TEM wave in the coaxial arm or into either of two

circularly polarized waves in the circular arm depending

on whether their phases are in-phase or three-phase.

We now consider the power combining system with the

three oscillators symmetrically connected to the three rect-

angular waveguides of the above six-port magic junction as

shown in Fig. 2. If both circuits attached to the coaxial

and the circular arms are adjusted to stabilize an in-phase

synchronization, the powers from the three oscillators

completely combine and emerge from the coaxial arm.

Accordingly, since no power is delivered to the circuit of

the circular arm, the circuit seems to be unnecessary. But

actually it plays the important role of holding the in-phase

synchronization, as will be shown later.

If, on the other hand, a three-phase synchronization is

stabilized, a combined wave in a right- or left-hand circu-

lar polarization is produced in the circular waveguide. In

this case, it does not necessarily follow that we can obtain

a circular polarization with a desired direction of rotation,

because the two three-phase synchronizations are degener-

ate for a reciprocal circular waveguide circuit with rota-

tional symmetry. To separate the two modes, the degener-

acy is to be resolved. This can be achieved by, for example,

connecting a nonreciprocal circuit to the circular wave-

guide, as will be discussed in Section V.

III. STEADY-STATE SOLUTIONS

In Fig. 2, [Y] indicates an admittance matrix looking

toward the coupling circuit inclusive of variable reflectors

(or loads) at the symmetrically located reference planes of

three oscillators. On the assumption that each oscillator

has the same parameters except for the free-running fre-

quency, let us represent the admittance of the pth oscilla-

tor as

yGp=G,(~p)+jQ,(~–@op)/@o,p=l,2,3 (3)

where G.( VP) is the negative conductance, VP the ampli-

tude of the oscillation voltage, UOPthe free-running angu-

lar frequency, Q, the external Q, and U.= ( Uol + ao2 +

@03)/3.
‘-Now, considering the condition whereby the total admit-

tance is equal to zero in Fig. 2, we obtain the following

condition necessary for synchronized oscillation:

([ Y]+[YG])O=O (4)

where v is the voltage vector with its components given by

the RF voltages at respective reference planes, and

where a, and b, (i=l,2,. . . ,6) are the incident and scat-

tered power waves of the i th port, respectively. Moreover,

notice that right- and left-hand circularly polarized waves .F

[YG]=diag [YG,,Y(2,YG3]. (5)

Next. let it be assumed that all the W. are of the same
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Fig. 1. (a) Schematic configuration of a six-port magic Junction
ployed as a combiner. (b) Terminals in the circular guide for

polarizations.

em-

two

Fig. 2. Block

Idrz, r3

L-——..—-—..—.J

diagram of a parallel running system of three
coupled through a six-port magic Junction.

oscillators

value. Then, all the oscillators see the same admittance

owing to the symmetry of the coupling circuit and the

identity of the three oscillators, and we have VI= Vz =

V3(-V), i.e., Y~l = Ye., = Y~3 (-Y~). As a result, (4) be-

comes the eigenvalue problem of [Y].

From the third-order rotational symmetry, the eigenvec-

tors of [Y] are given by

‘1=+[1‘2=+[’;11

and the corresponding eigenvalues by

l–r,

‘Z–l+ri’
—— i=l,2,3

(6)

(7)

where rl represents the voltage reflection coefficient of the

variable reflector in the coaxial arm (its phase is referred

to at the three symmetrical reference planes), and rz and

r3 those for right- and left-hand circular polarizations in

the circular waveguide, respectively.

Consequently, we find that this system falls into one of

the following three synchronized steady-state solutions:

1) In-phase synchronization:

YG+yl=o, V=tivul. (8)

This mode of synchronization can combine the three

powers into a TEM wave in the coaxial arm, as

mentioned above.

2) Three-phase synchronizations:

YG+y2=o, V= fivu, (9)

YG+y3=o, V= J3VU3. (lo)

These second and third modm produce a right- and a

left-hand circularly polarized output into the circular

waveguide, respectively.

Moreover, it is found from (8)–(10) that, in every case,

each oscillator behaves as if it were terminated in a load

with the same admittance as the corresponding eigenvalue

(eigenadmittance).

IV. VARIATIONAL EQUATIONS

In this section, we derive variational equations funda-

mental to treating the stability of the above synchronized

steady-state solutions. Now, let it be assumed that the

amplitude and the phase of the (oscillation voltage of the

pth oscillator deviate by slight values of 8~P and MP,

respectively, from the i th steady-state solutlon for one

reason or another. Then we can rewrite the voltage vector

with the first-order approximation as follows:

where v,, = D Vu, and

11~ = diag[e~”l, eJb’, e@’]8V (12)

W,= diag[ej”’, eJ6”, eJO’]80. (13)

To complete the list of definitions we have 6P (p= 1,2, 3)
. oscillation phase of the pth oscillator in the i th syn-

chronism:

With consideration of the fact that the term @ in an

admittance operated on VPindicates ~p/dt in a dynamical

sense [18], substituting (11) into (4) gwes

{
fi YP,u, + Ge(V+ W’,)+ j2Q,(u - tiO)/(.oO

~=1

( d8~2Q. d~oP 1 _
+j— —

@o dt ‘~V+8VP dt ))

UP=O, p=l,2,3 (14)

where it is assumed that the coupling circuit is free of

frequency dependence. To a first-order approximation with
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Fig. 3. Block diagram of a power-combining system delivering the sum
of three outputs to a load in the coaxial arm

respect to small variations, the above equation can be

rewritten in the matrix form

([ Y]+ YG[u])(q, +8q+jvMi)+stiJ(

+ d8q/dT + jvdM,/dT = o (15)

where s = ( dG, /dV) ~V, [U] is the unit matrix, and r =

((.Jo/2Q,)t.

Substituting the i th steady-state equation,

([y]+%[u])vi,=o (16)

into (15) and using the spectral representation of [Y], we

have

where fi~ is the adjoint vector of Uk. Furthermore, substi-

tuting the admittance expression in the i th steady-state,

YG+yl=o (18)

into (17) and putting all the coefficients of uk in the

resultant equation into zero from the orthonormal condi-

tions between u~’s, we can derive the following variational

equations around the i th steady-state solution:

V. CONDITION FOR STABILITY

A. System with Combined Output Power to a Coaxial Load

We consider the power-combining system shown in Fig.

3, where the coaxial arm is terminated in a load with a

reflection coefficient of rz and the circular arm in a
variable reflector with a reflection coefficient of rC regard-

less of the direction of polarization. Hence, in the follow-

ing we should note that the three-phase synchronizations

of this system are degenerate. After closely examining the

stability conditions for each mode of synchronization, we

will obtain the circuit conditions for complete power com-

bining.

1) Stability Conditions for In-Phase Synchronization: In

this case, since 8 VI = 8 V and Ml= i30, from (19) we obtain

d(ill.8V) d(iil. M)
—

dr
+S(ill. v)+jv d7 = o (20)

fik. [d8V/d~ +s8V+Re(yk - y1)8V

– V Im(y~ – yl)ild+ j{ Vd8d/d~

+VRe(yA –y1)86+1m(yk –y1)8V}] =(),

k=2,3. (21)

Paying attention to the fact that Ul, 8 V, and 88 are real

vectors, we can divide (20) into the following two equa-

tions:

d(iil.8V)/d~ +s(iil.8V)=0 (22a)

d(iil. &?)/d~ = O. (22b)

On the other hand, when y2 = y3, i.e., in the present case,

it is evident from (21) that the term in brackets is orthogo-

nal to both U2 and U3, and hence is proportional to the

real vector U1. Accordingly, we can see that the real and

imaginary parts in the brackets are each proportional to

U1. Thus,

d(ii~.8V)/d~ +{s+Re(yk– yl)}(fi~.8V)

–Im(yk– yl)V(iik.88)=0 (23a)

.Vd(ii~.80)/d~ +Re(y~-yl)V(ti~. M)

+Im(y~– yl)(il~.8V) =0, k= 2,3. (23b)

For stable in-phase synchronization all Ul, U2, and us

components of 8 V and 86 have to decrease with time. For

the U1 component of 8 V, the inequality

S>o (24)

is required from (22a), while no condition for the U1

component of tltl is required from (22b). Since an ordinary

self-excited oscillator has s = 2 [19], the above inequality is

satisfied generally. For the Uz and Uq components of 8 V

and 60, two roots of the following charar<.eristic equation

derived from (23) must have negative real parts:

s+ Re(yc–yl)+A –lm(yc–yl). V

lrn(y. -yl)/V Re(yC– yl)+~
= O (25)

where

YC-Y2 = Y3= (1 – rc)/(l + rc). (26)

To satisfy the above requiremeilts, it is necessary and

sufficient that

s+2Re(yC–yl)>0 (27a)

sRe(yC– yl)+{Re (yC–yl) }2+{Im(yC–yl)}2>0

(27b)

hold.

2) Stability Conditions for Three-Phase Synchronizations:

First, we deal with the second mode (i= 2) given by (9).



OHTA AND KANEKO : PARALLEL RUNNING SYSTEM OF THREE OSCILLATORS 1703

Substituting i = 2 and (26) into (19) yields

fi,. {(yl-yc)(8v2 +jvae2)+s8v2

+ dav2/d7 + jvdM2/dT } = o (28)

ilz” (S8VZ + d8V.\dr + jVdM2/dr) = O (29)

ii~. (S8V2 + d8V2/d~ + jVdM2/d~) = O. (30)

The Hermitian inner product of each eigenvector and 8 V2

or 882 can be rewritten as

ill. (av2, 8(?2)= (fi3R-jii31). (t3v, 80) (31a)

ii2. (8v2, 802) =lll. ((?v,rso) (31b)

ii3-(8V2, C302)= (ii~~ + jiial). (?3V, 80) (31C)

where u ~ is replaced in the form

by the use of real vectors u~~ and UB1. Since, as can be

seen from (31 b), tiz. (i? V2, 802) is a real number, (29)

becomes the s-me as (22). Therefore, no condition but (24)

is derived frc,; (31 b). Substituting (31a) and (31c) into

(28) and (30), respectively, and equating the real and

imaginary parts separately, we have

di3V,/d~ + VdN3r/d~ + s8V, +Re(yl – yC)(tiV. + VN?I)

+Im(yl– yc)(8VI– V80~)=0 (33a)

d8Vr/dr – VdN3~/d~ + S8V1

+Re(yl– yC)(aV1– WM~)

–lm(yl– yC)(8V~+V8f31)=0 (33b)

d6V~/d~ – Vd88r/dr + S6VR = O (34a)

d8V[/dr + Vd80~/dr + S8V1 = O (34b)

where

8vR, r=ii3R,1. w tieR,T=ii3R, T.8e. (35)

Equations (33) and (3Q) give the characteristic equation

A4+ p3A3 + p2A= + plA + p. = o (36)

where

Po=s2(Y; +Y:)/4 (37a)

P1=.4Y; +Y:+WJ (37b)

p== Y:+ Y:+3sy~+s2 (37C)

Ps=2(Y~+s) (37d)

with the replacements of

~~=Re(~l–~.) ~~=Im(~l–~.). (38)

Applying the Routh-Hurwitz criterion to (36) brings the

following necessary and sufficient conditions that all the

roots of (36) have negative real parts for p.> O [20]:

pl>o (39a)

P1 Po>o

P3 P2
(39b)

P1 Po o

P3 P2 PI >0. (39C)
o 1 p3

Fig. 4. Stabilrty region of the in-phase synchronization (region A) and

instability region of the other synchronizations (region B) on a Smith

admittance chart for a circular arm circuit (r<) of a power-combining
system delivering output power to a matched load (r, = 0).

If

{Im(y,-yc)}2{s+2Re(y,-y.)}

+2 Re(yl–yC){s +Fte(yl–yC)}2>0 (40)

all the inequalities of (39) are satisfied. Accordingly, (40) is

the stability condition for the second mode.

To the third mode also (40) applies, because we can have

the same discussion by the interchange of subscripts 2

and 3.

3) Circuit Condition for Power Combining: Let us exam-

ine actual circuit conditions for complete power combining

by means of the above stability conditions, (27) and (40).

If a matched load is connected to the coaxial arm, we have

y~=l or r~=o. (41)

Moreover, let it be assumed that

S=2. (42)

Then, a region where yC (r=) satisfies (27), in other words a

stability region of the power-combining synchronization

for a circular arm circuit, can be drawn as region A on the

Smith admittance chart in Fig. 4. On the other hand, as a

region where (40) is unsatisfied, i.e., an instability region of

the other modes, we obtain region B in the same figure.

Thus, it is found that by fixation of rC in the common

region between both regions (i.e., region B), only the first

mode (in-phase mode) can be realized with the desired

stability; hence a completely combined power can be deliv-

ered to the matched load in the coaxial arm.

B. System with Combined Output Power in a Circular@
Polarized Wave

Fig. 5(a) exhibits a specific circuit ccmfiguration to be

discussed. A variable reflector is connected to the coaxial

arm, and a Faraday rotator, a centered circular aperture in

a transverse metallic plate, and a (symmetrical) load in

that order are connected to the circular arm. In the figure,
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rl represents a reflection coefficient of the variable termi-

nation in the coaxial arm, while I’z and r~ represent those

of the circular waveguide circuits for right- and left-hand

circular polarizations, respectively. The magnitudes of rz

and rq are equally adjusted by the size of the circular

aperture, but their phase angles differently by the exciting

current of the Faraday rotator. Since the Faraday rotator

gives different phase shifts to a right- and a left-hand

circular polarization, the two three-phase synchronizations

of this system become nondegenerate. Therefore, we can

distinguishably obtain one of the two circularly polarized

outputs. In addition, it is also possible electrically to

switch its direction of rotation since the phase angles of rz

and rq are exchanged for each other by inversion of the

exciting current of the Faraday rotator.

Now, let us analyze the stability conditions for the ith

synchronization mode (i =1,2,3). The present system is a

little more complicated than the first mode system because

of the nondegeneracy of the three-phase synchronization

modes. Let it be assumed that integers i, j, and k in that

order are equal to 1, 2, and 3 in the cyclic order; for

example if i = 3, we have that j = 1 and k = 2. Then, by

inspecting (6), (12), (13), and (35), we can obtain

ti,.dy=iil.av ii,. isd, =iil. ae (43)

iiJ.6~=f3V~+ j8V[ il~ .86, = 8eR+ j881 (44)

il~.i3~ = 8V~ – j8V1 iik.8e, = 86R– j86[. (45)

Substituting (43), (44), and (45) into (19), we obtain the

same equations as (22) and the following equations:

d8V./d~ – Vd80,/d~ + s8V. +Re(y, – y,)(i3V, – V861)

–Im(yJ– y,)(8Vf+VN3~)=0 (46a)

d8V1/d~ + Vd8(3,/d~ + S8V1 +Re(yj – y,)(8V1 + VtlO~)

+Im(y, –y, )(i$VR-VM1)=O (46b)

d8V,/d~ + Vd813T/d~ + s8V, +Re(y, – y,)(8V, + V801)

+Im(yk - yZ)(8V1– V86~) =0 (47a)

d8V1/d~ – Vd88~/d~ + ,s8V1+Re(y~ – y,)(~~ – VC$@R)

–Im(yA– y1)(8V~+V8d1) =0. (47b)

Actual stability conditions for this case are derived from

only (46) and (47) in the same manner as before. However,

a characteristic equation derived from the four equations,

as can be forecast from the difference between (34) and

(47), becomes more complicated than (36). For this reason,

it is difficult to obtain analytically stability conditions in

the form of an inequality such as (27) and (40). Fortu-

nately, in the above discussion, we see that the main parts

of a stability and an instability region are located where

the imaginary part of the eigenadmittance, y,,,, ~, vanishes.

So, let us examine the following particular case first:

Imyl=ImyJ=Imy~=O. (48)

Circular

Variable
reflector

(a)

Mechanical Round-to–rectangular
rotator transition -

~

Power sensor
-:.,.-..> Frequency counter

Isolator Spectrum analyzer

Matched res. card
absorbing a field with the
elect. vector perp. to TEYo

(b)

Fig. 5. Block diagrams of (a) m oscillator system directly combining

three output powers into a circularly polarized wave and of (b) its load
composed for measurements of output power in various directions of

polarization.

Then the characteristic equation reduces to the second-

order equation

2X2 +2(s + y,,R +Yklzr)~+~(Y,lR + ykzR )

+2y,1RyktR = o (49)

where

Y,,R=Re(Y, –Yz) yk~R ‘Re(Yk – .Pt). (50)

This equation derives the two conditions necessary and

sufficient for stable synchronization of the i th mode as

follows :

s + YJIR+ yklR >0 (51a)

(51b)S(yJZR + Y~,~) ‘2yjRhR >0.

In a practical parallel running system, it is to be desired

that only the i th mode is stabilized and the other modes

(the jth and kth modes) are suppressed. For this purpose

we may choose y~ and yk with comparable values. Now, if

we assume that

Y,= Yk (52)

then the inequality

Y,,R + ykiR >0 (53)

satisfies simultaneously the two inequalities in (51) approx-

imately. Moreover, (53) derives the following inequalities

with (52) also:

yk]R + YZIR e yt,R <0 (54a)

y~kR + yzkR = y~kR <0. (54b)

Namely both the jth and kth modes become unstable.

Consequently (53) is the condition necessary and sufficient

for stabilizing only the ith mode under the assumptions of

(48) and (52).

For the requirement of more rigorous conditions, nu-

merical calculation is unavoidable. As an example, Fig. 6

exhibits a stability and an instability region of each syn-

chronization mode numerically calculated for r~ when
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Fig. 6. Stability and instability regions of each synchronization mode
numerically derived for rq of a system with a circularly polarized
output power when s = 2 and rl = r2 = – 0.4 (on a Smith admittance

chart).

100 !

Power
comb?nlng effjclency

o“ 2n
–~~g r2,3 (rllatlve values)

Fig. 7. Measured power-combining efficiency and synchronizing fre-

quency for the power combining system with an output power into a
coaxial load.

s=2 and

r,= r,= –0.4 (i.e., yl= yz= 2.33). (55)

The figure also indicates that (53) can be regarded as

appropriate.

VI. EXPERIMENTAL RESULTS

In order to prove the above-mentioned analytical re-

sults, the two different types of power combining (parallel

running) systems were constructed of three Gunn oscilla-

tors, whose output powers and free-running frequencies

were equally adjusted to 68 mW and 9.2 GHz, respectively,

and whose external Q‘s were 70, 71, and 72.

A. System with Combined Output Power to a Coaxial Load

The system shown in Fig. 3 was constructed and tested.

Fig. 7 exhibits the measured power-combining efficiencies

and synchronizing frequencies as a function of – arg )7=for

lrCl = 0.35. By inspection of the locus of 117CI= 0.35 illus-

trated in Fig. 4, it is found that the power-combining

synchronization is maintained in a region comparable to

region B. Furthermore, the frequency in the synchronism is

approximately equal to that in free-running, and the

power-combining efficiency is about 97 percent. Outside of

this range, the system operates in the three-phase synchro-

nism. In three-phase synchronism, the output power deliv-

800°

600”L~–argr3+arg~2

400°

/

K
--argra

200°

-. I

-zoooo~+oo
Excltlng current (mA)

Fig. 8. Phase shift of r2 and rj versus exciting current for the Faraday
rotator (measured).

ered to the coaxial load is very small and below about 0.05

percent in combining efficiency at the middle of the syn-

chronization region. The synchronization frequencies are

pulled by rC and their maximum deviation from the free-

running frequency is roughly equal to the maximum devia-

tion, 45.4 MHz, of a single oscillator with an external Q of

71 (the average value for the three oscillators) pulled by a

load having a reflection coefficient of lrCl = 0.35.

Hysteretic phenomena also are observed in transitions

from one synchronization to the other. This is explained

by concurrent stability of both synchronizations.

B. System with Combined Output Power in a Circularly

Polarized Waoe

An experimental oscillator system was constructed in

the manner illustrated in Fig. 5(a). As shown in Fig. 5(b),

the load was composed of the arrangement for measure-

ments of the output power in various directions of polar-

ization. The metallic circular aperture and the Faraday

rotator employed gave reflections whose magnitudes were

0.37 ( 11’2,31= 0.37) and whose relative phase angles were

determined by the measured phase shifts shown in Fig. 8,

respectively. If 171= – 0.37 and iri tial phase angles of 17z,q

(phase angle when the exciting current of the Faraday

rotator equals zero) is 123°, we lhave that yl = yz = 2.17

and y~ = 0.46 (I’z = – 0.37 and rq = 0.37) when the excit-

ing current becomes 27 mA. Then, as described in the

previous section, since only the third mode is stabilized, we

can obtain a left-hand circularly polarized output. In this

case, the circuit of the coaxial arm plays the role of

suppressing the in-phase Synchrorlization and holding the

three-phase synchronization, though it cannot discriminate

the two three-phase synchronizations by itself.

Fig. 9 shows the measured output powers in a direction

of polarization parallel to that of Osc. 1 and synchronizing

frequencies as a function of the exciting current of the

Faraday rotator. As predicted, the third mode is stabilized

in a region around the exciting current of 27 mA. Consid-

ering that each oscillator in steady state behaves as if it

were terminated in the eigenadmittance, we can under-

stand that the synchronizing frequency of the third mode

becomes lower because of the phase delay of 173(i.e., the
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Excltlng current (mA)

Fig. 9. Measured output power in a direction of polarization and syn-

chronizing frequency versus exciting current of the Faraday rotator.

o“

Power (mW)

Fig. 10. Measured combined power versus direction of polarization for
various values of exciting current.

increase of the susceptance of yg in the stability region)

with the increase of the exciting current, and oppositely

that of the second mode higher because of the phase

advance of I’2.

Fig. 10 illustrates the measured combined power in

various directions of polarization at the exciting currents

corresponding to points A, B, C, D, and E dotted in Fig.

9. At points B, C, and D, which exist in the center of the

stability region and neighborhood, axial ratios near unity

namely, approximate circular polarizations, are obtained,

but at points A and E in the edge of the region deteriora-

tion of the axial ratios is noticeable. Moreover, the sum of

the combined powers in two directions of polarization

orthogonal to each other is reduced to about 80 percent of

the sum of output powers from the three oscillators. This is

presumably caused by the fact that each oscillator runs at

a point separated from the optimum operation point or, in

other words, it is equivalently terminated in the eigenad-

mittance different from an optimum admittance (a matched

load).

VII. CONCLUSIONS

We have made both a theoretical and an experimental

investigation concerning the synchronization of three oscil-

lators symmetrically coupled through a six-port magic

junction with the aim of power combining, and have

suggested two parallel running systems (power combining

structures), namely systems with a combined output power

in the coaxial load and with a circularly polarized output

power combined in the circular waveguide. The one can be

easily adjusted and has a simple combining structure, and

the other is distinguished by the form of output power

directly combined into a circular polarization and electri-

cal switch of the rotatory direction of the circular polariza-

tion.

The development of a combiner capable of connecting

four or more oscillators and the examination of a power-

combining oscillator system utilizing the methods de-

scribed in this paper would be interesting subjects for

further work.

ACKNOWLEDGMENT

The authors would like to thank one of the reviewers for

the valuable comments regarding the manuscript.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

ReferenCeS

K. J. Russel, “Microwave power combining techniques;’ IEEE

Trans. Microwave Theoiy Tech., vol. MTT-27, pp. 472-478, May
1979.

C. T. Rucker, “A multiple-diode high-average-power avalanche-
diode oscillator,” IEEE Trans. Microwave Theory Tech., vol. MTT-
17, pp. 1156-1158, Dec. 1969.

K. Kurokawa and F. M. Magathaes, “An X-band 10-watt

multiple-IMPATT oscillator,” Proc. IEEE, vol. 59, pp. 102-103,

Jan. 1971.

R. S. Harp and H. L. Stover, “Power combirring X-band IMPATT

circuit modules;’ presented at the IEEE Int. Solid-State Circuit

Conf., 1973.

S. Nogi and K. Fukui, “Optimum design and performance of a
microwave ladder oscillator with many diode mount pairs,” IEEE
Trans. Microwave Theory Tech., vol. MTT-30, pp. 735–743, May

1982.
A. Materka and S. Mizushina, “A waveguide-cavity multiple device
FET oscillator,” IEEE Trans. Microwave Theory Tech., vol MTT-30,

pp. 1237-1241, Aug. 1982.
M. Madihian and S. Mizushina, “A 3M-device cavity-type power
combiner,” IEEE Trans. Microwave Theo~ Tech., vol. MTT-31,

pp. 731-736, Sept. 1983.

H. Fukui, “Frequency locking and modulation of microwave sili-

con avalanche diode oscillator,” Proc. IEEE, vol. 54, pp.
1475–1477, Oct. 1966.

S. Mizushina, “ 2’ oscillators combined with 3-dB directional cou-
plers for output power summing,” Proc. IEEE, vol. 55, pp.
2166–2167, Dec. 1967.

J. Ikenoue and K. Fukui, “On the parallelly-operatmg reflex
klystrons coupled with a magic T,” J. IECE Japan, vol. 49, pp.

2439–2446, Nov. 1967 (in Japanese).

W. O. Schlosser, “Noise m mutually synchronized oscillators,”

IEEE Trans. Microwave Theo~ Tech., vol. MTT-16, pp. 732-737,

Sept. 1968.
Y. Okabe and S. Okamura, “Stabifity and noise of many oscillators
in parallel-running; Trans. IECE Japan, vol. 53-B, pp. 743-754,
Dec. 1970 (in Japanese).

M. NakaJima, “A proposed multistage microwave power combiner;
Proc. IEEE, vol. 59, pp. 242-243. Feb. 1973.
I. Ohta and K. Fukni, “Asymmetrical parallel running of two
oscillators,” Trans. IECE Japan, vol. J60-B, pp. 403–410, June

1977 (in Japanese).
S. Mizushina, H. Kondoh and M. Ashiki, “ Corporate and tandem
structures for combinmg power from 3 v and 2 N + 1 oscillators,”
IEEE Trans. MZcrowaue Theo~ Tech.. vol. MT1-28, pp. 1428-1432,

Dec. 1980.

M. Madihian and S. Mizushina, “Combining the powers from
multlple-device oscillators,” IEEE Trans Microwave Theoiy Tech.,

VO1. MTT-30, pp. 1228–1233, Aug. 1982,
I. Ohta, “A new sin-port microwave network: Six-port magic junc-

tion,” IEEE Trans. Microwave Theo~ Tech,, vol. 36, pp. 859-864,
May 1988.
K. Kurokawa, “Some basic characteristics of broadband negative

resistance oscillators,” Be[l ~vsr. Tech J., vol. 48, pp. 1937-1955,
July-Aug. 1969.
K. Kurokawa, “Injection locking of microwave solid-state oscdla-
tors,” Proc. IEEE, vol. 61, pp. 1386–1409, Oct. 1973.
C. Hayashi, Nonhnear Oscillations in Phvslcal Systems. New York:
McGraw-Hill, 1964.



OHTA AND KANEKO: PARALLEL RUNNING SYSTEM OF THREE OSCILLATORS

Isao Ohta (M’86) was born in Okayama, Japan,
on February 14, 1943. He received the B.S., M. S.,
and Ph.D. degrees in electrical engineering from
Osaka University, Osaka, Japan, in 1965, 1967,
and 1978, respectively.

In 1967, he joined the Department of Elec-
tronics, Himeji Institute of Technology, Himeji,
Japan, as a research instructor. He is currently
an Associate Professor. His research activity is
mainly devoted to mutual synchronization of two
or more microwave oscillators and its applica-

tions to power combining; noise reduction and frequency stabilization;
and microwave networks such as planw-circuit-type directional couplers
and the six-port magic junction.

Dr. Ohta is a member of the Institute of Electronics, Information and
Communication Engineers of Japan.

1707

Takenori Kaneko was born in Mie prefecture,
Japan, on February 27, 1928. He re~eived the
B.S. degree from Waseda University, Tokyo,
Japan, in 1950, and the doctor of engineering
degree from Osaka University, Osaka, in 1985.

During the years 1954–1962 he was at Kobe
University, Kobe, where he was engaged in re-
search on microwave tubes and electron beams.
In 1962, he became an Associate Professor in the
Department of Electronics at Himeji Institute of
Technology, Himeji; in 1971 he became a Profes-

sor. He has been working in the area of microwave electronics and
plasma electronics.

Dr. Kaneko is a member of the Physicaf Society of Japan, the Japan
Society of Applied Physics, and the Institute of Electronics, Information
and Communication Engineers of Japan.


